

Energy balance approach for oscillator parameter ID

#### Brian Mann

Asst. Professor Mechanical Engineering and Materials Science Duke University

> 2010 Inverse Problems Symposium East Lansing, MI June 6-8, 2010

> > Upload Code: 29-263



## Outline

- 1. Background
- 2. Energy balance ID
- 3. Case studies
- 4. Summary



Select prior work

- 1992 Mohammad, Worden, Tomlinson, Direct approach
- 1988 Yashuda, Harmonic balance ID
- 1992 Yiang and Feeny, ID from Chaotic response
- 2003 Nichols and Virgin, ID from Chaotic interrogation
- 2006 Liang and Feeny, Energy balance (friction)



$$x(t) = b_{k0} + b_{k1}(t - t_k) + b_{k2}(t - t_k)^2 + b_{k3}(t - t_k)^3$$





## Outline

- 1. Background
- 2. Energy balance ID approach
- 3. Case studies
- 4. Summary



Example energy balance: Oscillator

Example system  $m\ddot{x} + c\dot{x} + kx + k_3x^3 = F\cos\Omega t$ 

#### Balance energy

$$\int_{t_1}^{t_2} \left( m\ddot{x} + c\dot{x} + kx + k_3x^3 \right) \dot{x}dt = \int_{t_1}^{t_2} \dot{x}F \cos\Omega t \, dt$$

Generic expression  $T_{1\rightarrow 2} + U_{1\rightarrow 2} = W_{in} - W_d$ 



Energy balance

#### Energy balance

$$T_{1\to 2} + U_{1\to 2} = W_{in} - W_d$$

Conservative terms

$$T_{1 \to 2} = \frac{1}{2} m \left( \dot{x}(t_2)^2 - \dot{x}(t_1)^2 \right)$$
$$U_{1 \to 2} = \frac{1}{2} k \left( x(t_2)^2 - x(t_1)^2 \right) + \frac{1}{4} k_3 \left( x(t_2)^4 - x(t_1)^4 \right)$$

# Nonconservative terms $W_d = \int_{t_1}^{t_2} c\dot{x}^2 dt \qquad W_{in} = \int_{t_1}^{t_2} \dot{x}F \cos\Omega t dt$



## Outline

- 1. Background
- 2. Energy balance ID approach
- 3. Case studies
- 4. Summary



### Experimental system





## Compare: Energy ID and analytical soln

#### Governing eqn

$$\ddot{\theta} + 2\mu\omega\dot{\theta} + \omega^2\sin\theta$$
$$\ddot{\theta} + \omega^2\theta = -f\left(\theta, \dot{\theta}\right)$$

#### Assumed soln

$$\theta(t) = a\cos(\omega t + \phi) = a\cos\psi$$

Avg eqns  

$$\dot{a} = \frac{1}{2\pi\omega} \int_0^{2\pi} \sin\psi f \left(a\cos\psi, -a\omega\sin\psi\right) d\psi = -\mu\omega a$$

$$\dot{\phi} = \frac{1}{2\pi\omega a} \int_0^{2\pi} \cos\psi f\left(a\cos\psi, -a\omega\sin\psi\right) d\psi = \frac{3a^2\beta}{8\omega}$$



#### Integrated terms

$$a = a_0 e^{-\mu\omega t}$$
$$\phi = \frac{a_0^2}{32\zeta} \left( e^{-2\mu\omega t} - 1 \right) + \phi_0$$

#### Analytical soln

$$\theta(t) = \vartheta_0 e^{-\mu\omega t} \cos\left(\omega t + \frac{\vartheta_0^2}{32\mu} \left(e^{-2\mu\omega t} - 1\right)\right)$$



### Comparison: Analytical vs energy





### Magnetic pendulum example

# Governing eqn $\ddot{\theta} + 2\mu\omega\dot{\theta} + \omega^2\sin\theta + \sum_{n=1}^{3}\hat{\alpha}_n(n+1)\theta^n = 0$

#### Error norm

$$E_p = \sqrt{\frac{1}{n_p} \left( \left(\frac{\mu_e - \mu}{\mu}\right)^2 + \left(\frac{\omega_e - \omega}{\omega}\right)^2 + \sum_{n=1}^3 \left(\frac{\alpha_{ne} - \alpha_n}{\alpha_n}\right)^2 \right)}$$



#### Steps

- -Test energy balance on synthetic data
- Apply to experimental system



### Comparisons for simulated data





#### Experimental comparisons





## Experimental bistable potential wells

|                |        | Parameter  | $\mu$  | $\omega ~({\rm rad/s})$ | $lpha_1~({ m N/rad})$ | $lpha_2~({ m N/rad}^2)$ | $lpha_3~({ m N/rad}^3)$ |
|----------------|--------|------------|--------|-------------------------|-----------------------|-------------------------|-------------------------|
| Removable base |        | Reference  | 0.0509 | 11.74                   | -138.3                | 21.3                    | 163.1                   |
|                |        | Estimated  | 0.0510 | 11.71                   | -137.3                | 21.3                    | 162.9                   |
| Magnet         | Magnet | Experiment | 0.0287 | 11.74                   | -145.25               | 25.74                   | 188.11                  |





Forced oscillator example

Example system  $m\ddot{x} + c\dot{x} + kx + k_3x^3 = F\cos\Omega t$ 

Work into system  $W_{in} = \int_{t_1}^{t_2} \dot{x} F \cos \Omega t \, dt$ 

 $x(t) = b_{k0} + b_{k1}(t - t_k) + b_{k2}(t - t_k)^2 + b_{k3}(t - t_k)^3$ 



### Comparison of phase plane trajectories



x(t)



#### Comparison of Poincare Sections





Acknowledgements

#### Collaborators:

Neil Sims, Firas Khasawneh

#### **Research support:**

- National Science Foundation
- Office of Naval Research Young Investigator Award
- ONR Program Manager Ronald Joslin

**Disclaimer:** The results and opinions expressed by the PI are not necessarily those of the funding agency.







